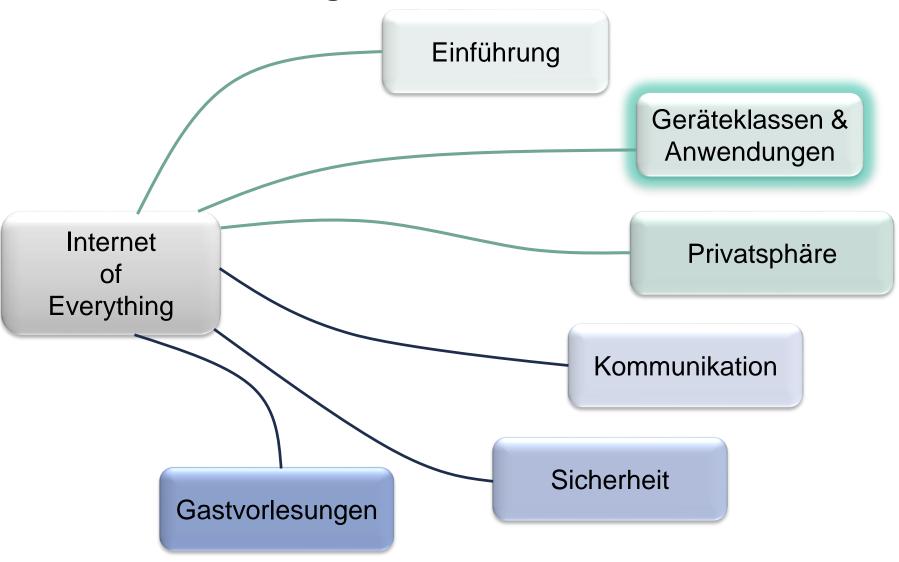


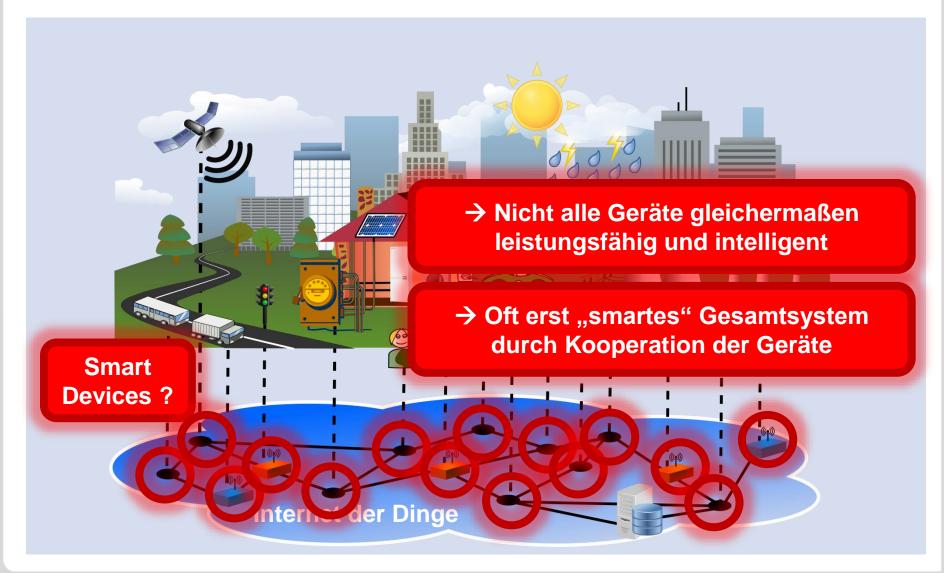
Vorlesung Internet of Everything Kapitel 2 – Geräteklassen und Anwendungsbeispiele


Prof. Dr. Martina Zitterbart, Martin Florian, Markus Jung [zitterbart, florian, m.jung]@kit.edu

Institut für Telematik, Prof. Zitterbart

Inhalte der Vorlesung

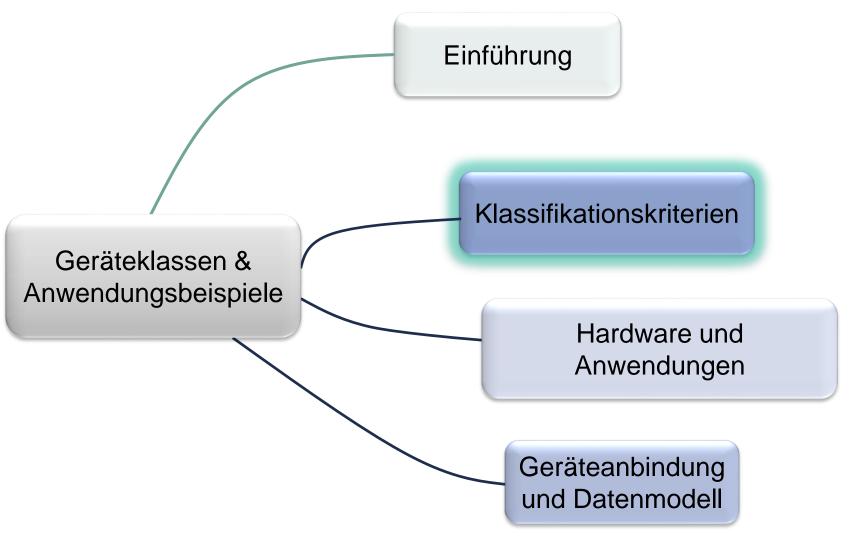
Schwerpunkte des Kapitels im Überblick



Einführung Klassifikationskriterien Geräteklassen & Anwendungsbeispiele Hardware und Anwendungen Geräteanbindung und Datenmodell

IoE Szenario

Einführung – typische Geräteklassen im IoE


- Mark Weisers vorausgesagte Geräteklassen sind grundlegend
 - Aber heute deutlich mehr Klassen und feinere Unterteilungen möglich

Tabs	Pads	Boards
ZentimeterAn Kleidung getragen	DezimeterIn Hand getragen	MeterFeste Interaktive Displays

- Auswahl der Geräteklassen und Hardwarekomponenten immer von konkreten Anwendungsanforderungen abhängig
- Klassifikation der loE-Geräte nach unterschiedlichen Kriterien möglich z.B.
 - Anwendungsbereich
 - Leistungsfähigkeit
 - Energiebedarf und Lebensdauer
 - Deployment-Modell
 - Funktional z.B. anhand von Sensorik / Aktorik
 - Größe und Gewicht
 - Benötigte Stückzahl und Kosten

Klassifikation nach Leistungsfähigkeit

- Beurteilung der Leistungsfähigkeit z.B. möglich anhand
 - Speicher
 - Rechenleistung
 - Übertragungsrate
 - HW-Architektur
 - Kommunikationsschnittstelle (Durchsatz, Reichweite, Band ...)
 - Schnittstellen zur Anbindung von Sensoren, Peripherie, A/D-Wandler usw.
 - **...**
- Gegenseitige Abhängigkeiten von anderen Klassifikationsmerkmalen
 - → Beispiel: Verfügbare Speichermenge und Architektur
 - Busbreite hat Einfluss auf Genauigkeit und Größe der Datentypen
 - Beeinflusst Datenvolumen für Kommunikation und Berechnungen
 - Speichermanagement (MMU) benötigt zusätzliche Energie

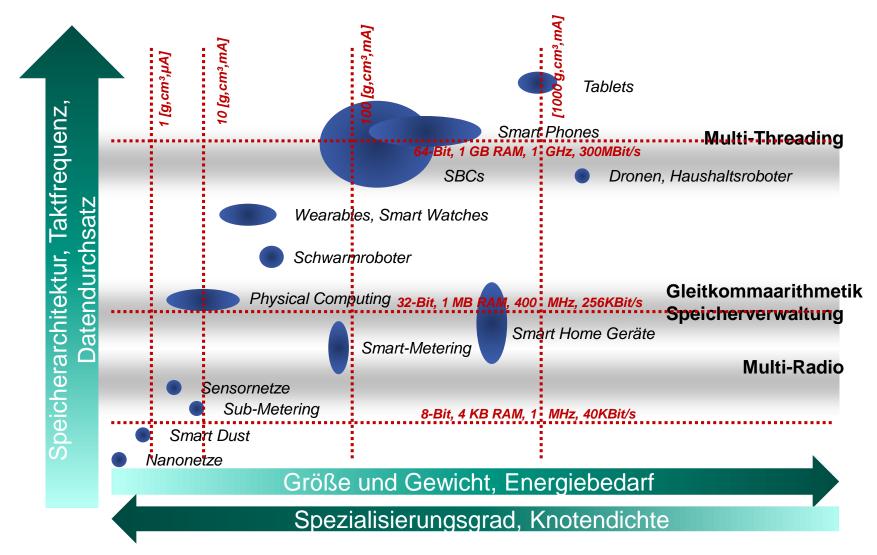
Klassifikation von Objekten im IoE

- Beschränkte Systeme werden einen wichtigen Teil des Internets bilden
 - Anhaltspunkt für das Protokolldesign: Unterteilung in Geräteklassen
- Beispiel für eine mögliche Klassifikation: IETF RFC 7228
 - Kriterium: Leistungsfähigkeit
 - Nur für sehr einfache und kleine Geräte im Internet der Dinge geeignet
 - Fokus liegt hier u.a. auf Adressierbarkeit von Objekten (6LoWPAN / CoAP)

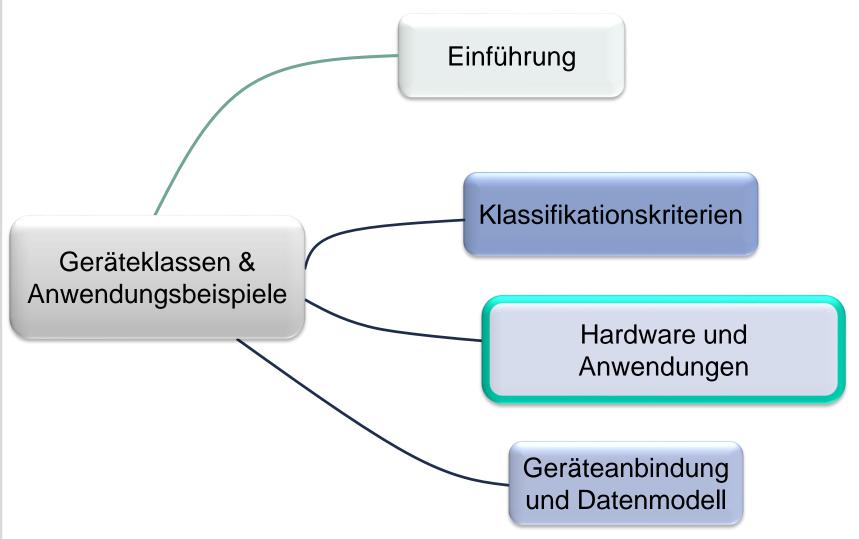
Klasse	Data size (z.B. RAM)	Code Size (z.B. Flash)	Typische Eigenschaften
CO	<< 10 Kilobyte	<< 100 Kilobyte	Sichere Internetkommunikation nur über Proxies/Gateways, Vorkonfiguriert, keine traditionellen Management oder Security- Maßnahmen möglich
C1	~ 10 Kilobyte	~ 100 Kilobyte	Optimiertes IP und UDP, aber kein HTTP oder TLS
C2	~ 50 Kilobyte	~250 Kilobyte	Energieoptimierte Netzwerkstacks für traditionelle Internet-Protokolle

Klassifikation nach Energiebeschränkung

IETF RFC 7228


Klasse	Typ der Energiebeschränkung	Beispiel
E0	Beschränkung auf Ereignis	Event-basiertes Harvesting
E1	Beschränkung auf Zeitperiode	Batterie, die periodisch geladen oder ausgetauscht wird
E2	Lebenszeitbeschränkung	Nicht austauschbare Batterie
E9	Keine Beschränkung der Energiemenge	Kontinuierliche Stromversorgung

- Zwei grundlegende Problematiken bei Energiebeschränkung
 - Bereitstellung und Speicherung von elektrischer Energie
 → Batterien, Kondensatoren, etc.
 - Umwandlung alternativer Energieformen aus Umgebung in nutzbare elektrische Energie → Energy Harvesting
 - + "Kostenlose" Umgebungsenergie
 - Oft nur geringer Wirkungsgrad erreichbar und Harvesting-Systeme unverhältnismäßig groß



Übersicht Geräteklassen und Leistungsfähigkeit

Spezialisierungsgrad ⇔ Systemgröße

Nanonetze

Smart Dust

Sensornetze

Physical and Embedded Computing Smart- und Submetering

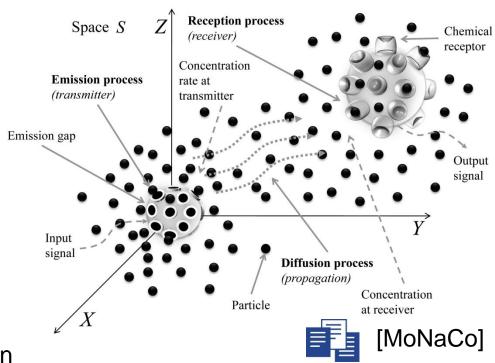
Smart Home

Drohnen und Roboter
Wearables

Smart Phones

Single Board Computer

Industrie 4.0 / Industrial Internet



Nanonetze

- Vernetzte Nanomaschinen
- Jede Nanomaschine kann jeweils nur eine Aufgabe erledigen
 - Berechnungen (Computing)
 - Speichern (Storage)
 - Messen (Sensing)
 - Manipulieren (Actuatuation)
- Anwendungsbereiche in
 - Biomedizin (z.B. Intra-body-communication),
 - Militär
 - Industrie (u.a. Chemie)
- Molekulare Kommunikation statt mittels elektromagnetischen Wellen
 - Walkway: Propagation z.B. mittels E. coli Bakterien
 - Flow: Über lange Strecken möglich z.B. Pheromone in Wasser
 - Diffusion: Signalisierung zwischen Zellen. z.B. auch in Papier möglich

Spezialisierungsgrad ⇔ Systemgröße

Smart Home

Nanonetze

Smart Dust

Sensornetze

Physical and Embedded Computing Smart- und Submetering

Drohnen und Roboter

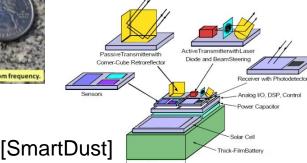
Wearables

Smart Phones

Single Board Computer

Industrie 4.0 / Industrial Internet

Smart Dust



- Entstehungsidee: ~1992 (Kris Pister, UC Berkeley)
 - Bisher reines Forschungsthema
- Sehr viele kleine (dumme) Knoten, unaufdringlich in die Umwelt integriert
 - Kooperatives zusammenwirken, Selbstorganisiert
- Sehr beschränkte Hardware (Größenordnung Nano- ... Millimeter)
 - Hoch spezialisierte Systeme, anwendungsspezifische Sensorik
 - Energy Harvesting (Miniaturisierungsgrad oft noch problematisch)
- Viele Probleme und offene Fragen
 - Skalierbarkeit (Tausende Knoten)
 - Netzdichte (Topologiekontrolle)
 - Energieversorgung (Batteriegröße)
 - Entsorgung

Smart Dust Mote

Spezialisierungsgrad ⇔ Systemgröße

Nanonetze

Smart Dust

Sensornetze

Physical and Embedded Computing Smart- und Submetering

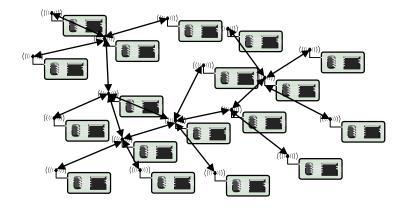
Smart Home

Wearables

Drohnen und Roboter

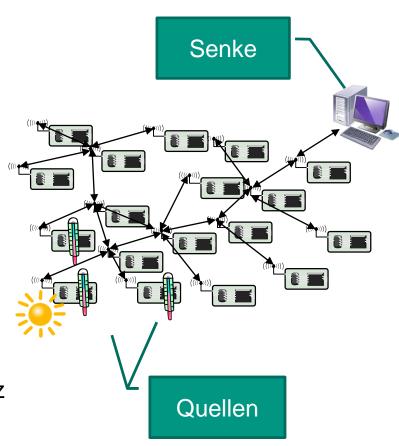
Smart Phones

Single Board Computer


Industrie 4.0 / Industrial Internet

Aufbau eines drahtlosen Sensor-Aktor-Netzes

- Ein drahtloses Sensor-Aktor-Netz (engl. Wireless Sensor-Actuator-Network, WSAN)
 - Besteht aus einer Menge von Sensoren und Aktoren
 - Drahtlos miteinander verbunden
 - Kommunikation störanfällig
- Sensor = "Kleinst-PC" (CPU, Speicher, Funkschnittstelle, Energieversorgung, Sensorik) bestimmt physikalische Eigenschaften seiner Umgebung


- Aktor = steuert ein System an, das elektrische Signale in physikalische Größen umsetzt (Temperatur, Druck, Drehmoment, ...)
- Sensorknoten / Knoten = Sensor oder Aktor eines Sensor-Aktor-Netzes

Aufbau eines Sensornetzes

- Ein oder mehrere Datenquellen
 - Messen Daten
 - Senden an andere Knoten
 - Ausgestattet mit Sensorik
 - Temperatur
 - Luftdruck
 - Infrarot
 - Beschleunigung
 - **.** . . .
- Datensenken (Basisstationen)
 - Empfangen Daten aus dem Sensornetz
 - Entweder ebenfalls Sensorknoten...
 - ...oder externe Geräte
 (PDA, Gateway zum Internet, PC mit UI zur Steuerung)

Annahmen

- Energieversorgung durch Batterien
 - Flexibler, da keine Kabel notwendig (→ mobile Szenarien)
- Keine unterstützende Infrastruktur
 - Infrastruktur nicht überall verfügbar bzw. keine Zeit für den Aufbau
 - Z.B. Katastrophengebiete, militärische Einsätze
 - Aufbau der Infrastruktur zu teuer bzw. zu umständlich
 - Z.B. bei Bauarbeiten, wenn großes Gebiet zu überwachen
- Geringe Bauform und Kosten
 - WSAN soll sich unauffällig in die Umgebung einfügen
 - Hohe Stückzahl erfordert geringe Kosten
 - Beschränkt verfügbare Ressourcen
 - Geringe Sendereichweite (→ Multihop-Kommunikation)

Unterschiede und Besonderheiten

- Dezentral
 - Keine zentrale Infrastruktur, oder nicht ständig erreichbar
- Selbstorganisierend
 - Eingeschränkte Nutzerinteraktion oder Wartungsmöglichkeit
 - Systeme nach Ausbringung oft schwer zugänglich
- Limitierte Ressourcen
 - Rechenleistung, Energie-, Speicher- und Kommunikationskapazität
- Unzuverlässiger Kommunikationskanal
 - Drahtloses Medium stärker fehlerbehaftet als drahtgebundenes
- Unsicher
 - Sensorknoten können beschädigt/entfernt/hinzugefügt werden
 - Abhören drahtloser Kommunikation
 - Klassische kryptographische Verfahren zu rechenintensiv für WSANs

Klassische Sensornetze

- Typische Systemeigenschaften
 - Sehr kleine Systeme (wenige cm³ und wenige Gramm Gewicht)
 - Auf Einzelanwendungen maßgeschneiderte Systeme
 - Selbstorganisation
 - Geringe Leistungsaufnahme und Hardwareressourcen
 - 8-Bit Systeme mit RAM im niedrigen Kilobyte-Bereich
 - Batteriebetrieb, Energy Harvesting (Laufzeit mehrere Jahre)
 - Unterstützung von mehreren Funkschnittstellen (Multi-Radio) nur bei sehr leistungsfähigen Knoten dieser Geräteklasse

ScatterWeb MSB

Sensorik

- Auf Anwendungszweck angepasste, austauschbare Module
- Messung von physikalischen und chemischen Eigenschaften
 z.B.: Druck, Temperatur, Feuchtigkeit, Helligkeit, Gase, Wind, Vibration, Ultraschall
- Typische Kommunikationsschnittstellen
 - Funk (2,4 GHz / 868 MHz-Band) z.B.: IEEE802.15.4, Bluetooth Low Energy, ZigBee
 - I²C, SPI, UART/RS232

Anwendungsbeispiel Sensornetze

Karlsruher Institut für Technologie

- Überwachung größerer Flächen z.B. Grenzüberwachung, Landwirtschaft, Great Duck Island, ZebraNet
 - Mehrere Funkschnittstellen nötig (Kurze Entfernungen im Sensornetz, weite Entfernung zu Basisstation)
 - Größe der Knoten darf Beobachtung nicht beeinträchtigen
 - Energieversorgung muss über lange Beobachtungsdauer gewährleistet werden
- Sensor/Actuator patch
- Intelligente und verteilte Regelung z.B. Active Aircraft, Industrieanlagen
 - Drahtlose Verbindungen kostengünstiger und flexibel
 - Einbettung von Sensornetzen in bestehende Systeme
 - Reglung / Datenerfassung durch verteilte Sensoren wesentlich feingranularer möglich als bisher
- Katastrophen- und Rettungseinsätze
 - Z.B.: Waldbrand → Koordination von Feuerwehrleuten

Spezialisierungsgrad ⇔ Systemgröße

Physical and Embedded Computing

Sensornetze

Smart Dust

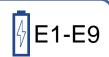
Nanonetze

Smart Home

Smart- und Submetering

Drohnen und Roboter
Wearables

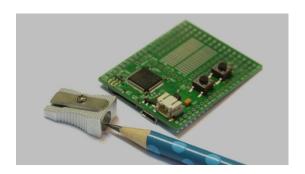
Smart Phones

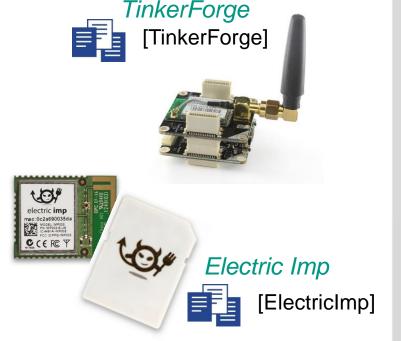

Single Board Computer

Industrie 4.0 / Industrial Internet

Physical & Embedded Computing

- Flexible Systeme aus eingebetteter und miniaturisierter Standardhardware
 - Kostengünstig, hohe Energieeffizienz
 - Auch "Große Sensorknoten" oder "Zwergencomputer"
- Einsatzbereich
 - Steuerungselektronik(z.B. Gewächshäuser, Tiergehege, Roboter)
 - Home Automation
 - Bastlerprojekte
 - Smart Metering und stationäre Sensoren (z.B. Wetterstationen, Gebäudeüberwachung)
- Sensorik und Aktorik
 - Temperatur-, Licht- und Abstandssensor, Kamera
 - Elektrische Motor-/Servoansteuerung, Leuchtdioden, Displays


- Systemeigenschaften
 - Wahlweise Batteriebetrieb oder ständiger Stromanschluss
 - Modularer Aufbau mit steckbaren Zusatzboards


Physical & Embedded Computing (2)

- Hardwareeigenschaften
 - Taktfrequenzen im MHz-Bereich
 - RAM im Megabyte-Bereich
 - 16- bis 32-Bit-Systeme
 - Oft als SoC realisiert
 - Ggf. Unterstützung von Gleitkommaarithmetik und Speicherverwaltung
- Typische Kommunikationsschnittstellen
 - I²C, SPI, USB
 - WLAN, ZigBee

Spezialisierungsgrad ⇔ Systemgröße

Smart- und Submetering

Smart Home

Drohnen und Roboter

Wearables

Single Board Computer

Industrie 4.0 / Industrial Internet

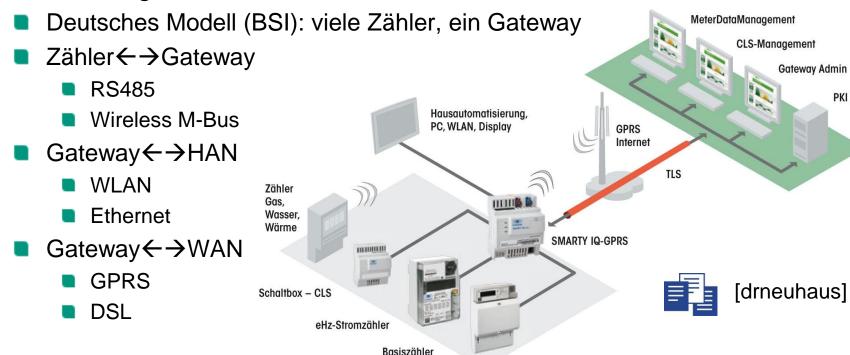
Physical and Embedded

Computing

Sensornetze

Smart Dust

Nanonetze


Smart Phones

Smart- und Submetering

- Zeitnahe Erfassung (und Steuerung) von Energieverbräuchen (~15min)
 - Wichtiger Bestandteil der "Smart Grid" Vision
 - Bessere Information der Kunden
 - Effizientere Nutzung von Ressourcen
- Ansammlung von Geräten und Kommunikationsstandards

Spezialisierungsgrad ⇔ Systemgröße

Smart Home

Sensornetze

Smart Dust

Nanonetze

Physical and Embedded Computing Smart- und Submetering

Drohnen und Roboter

Wearables Smart Phones Single Board Computer

Industrie 4.0 / Industrial Internet

Smart Home

- Hausautomation und -monitoring durch (drahtlose) Sensornetze
 - Funk ermöglicht mehr Flexibilität, einfache Nachrüstbarkeit
 - Beispiele: Licht-, Rollanden-, Temperaturmanagement
- Steuerung vor Ort oder über das Internet
 - Mit Smart Phones, Tablets, Bedienpanels o.ä.
 - (Herstellerspezifische) Gateways

- Herausforderungen
 - Einfache Konfiguration vs. Sicherheit
 - Benutzerverwaltung und -authentifizierung, Zugriffsschutz
 - Robustheit (Störungen!) und Energieeffizienz
 - Zeitkritische Aufgaben
 - Skalierbarkeit

Smart Home und Privacy

- Tiefe Verflechtung mit dem Lebensumfeld
 - Verkauft als Lifestyle-Produkte
 - Hersteller sind mit dabei im Ess-, Wohn- und Schlafzimmer!
 - Kernbereich privater Lebensgestaltung
 - Fehlende kritische Auseinandersetzung?

Elegato Eve + Apple HomeKit

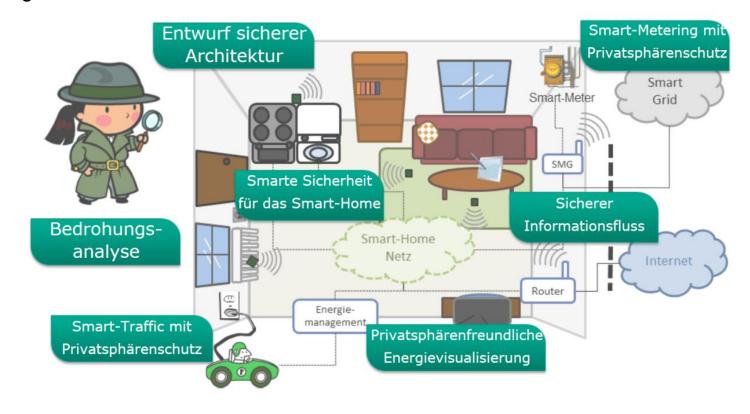
[Elegato]

Smart Home und Safety

- Abhängigkeit von externer Infrastruktur: Smart Home as a Service?
- Beispiel: Qivicon Smart-Home-Plattform der Telekom
 - Teilweise angewiesen auf Cloud-Server
 - 20-stündiger Ausfall am 29.09.2015
 - Lokale und entfernte Funktionalität nicht verfügbar (Heizungssteuerung, Alarmanlagen, Fernzugriff via Smartphone)

Smart Home und Safety

- Probleme mit der Zuverlässigkeit sind kein Einzelfall
- Google Nest
 - Software-Update spielt fehlerhafte Firmware ein
 - Jahreswechsel 2015/2016: Thermostate, Rauchmelder und Sicherheitskameras offline
 - Mitten im Winter bleibt die Heizung kalt!
- TCP Connected
 - Support Ende Juli 2016 eingestellt
 - Produkt ist immer noch im Verkauf!
 - Steuerung lokal über WLAN noch möglich, nicht mehr entfernt (App + Cloud-Dienst)
 - Alternative Infrastruktur von Nimbus9
 - Basisstation 150\$ + 5\$/Monat



Projektbeispiele

- KASTEL (KIT)
 - Smart Home Szenario
 - Wie sieht eine Architektur aus, die Sicherheit und Privatsphärenschutz gewährleisten kann?

Spezialisierungsgrad ⇔ Systemgröße

Smart Home

Smart- und Submetering

Drohnen und Roboter

Wearables Smart Phones Single Board Computer

Industrie 4.0 / Industrial Internet

TELEMATICS

Physical and Embedded

Computing

Sensornetze

Smart Dust

Nanonetze

Roboter und mobile Plattformen

- Mobile Plattform mit Sensoren und Aktoren zur Messung vor Ort
- Einsatzbereich
 - Kritische, lebensfeindliche oder unzugängliche Umweltbedingungen
 - Z.B. Radioaktivität, Kanalinspektionen
 - Unterstützung und Hilfestellungen im menschlichen Umfeld
- Typische Sensorik und Aktorik
 - Abstandssensoren, Beschleunigungssensoren, GPS
 - Antriebsmittel (Motoren), LEDs
- Systemeigenschaften
 - Mobilität: Können in Roboterschwärmen eingesetzt werden oder als mobile Erweiterung statischer Sensorknoten
 - Batteriebetrieb oder Energy Harvesting (z.B. Solarzellen)
- Übliche Kommunikationsschnittstellen
 - Infrarot, ZigBee, WLAN

Beispiele: Haushaltsroboter

- Haushaltsroboter für Smart Homes
 - Staubsaugen: Roomba

Roomba iRobot

- Freescale (ex-Motorola)
 MC9S12E Microcontroller
- RS232
- Infrarot
- Lautsprecher
- Wanderkennung,
 Bodenkantenerkennung,
 Schmutzerkennung
- Messung von Winkeln, Entfernung, Temperatur und Ladezustand

Parrot AR Drone

- ARM-Cortex-A8-Prozessor1 GHz / 32-Bit
- 1GB RAM
- USB
- WLAN
- Gyroskop
- Beschleunigungssensoren
- Magnetometer
- Drucksensor
- Ultraschallsensor
- 2 Kameras
- Zusätzliche MIPS-AVR
 Mikrocontroller zur
 Steuerung der 4 Motoren

Geräteklassen & Anwendungsbeispiele

Spezialisierungsgrad ⇔ Systemgröße

Nanonetze

Smart Dust

Sensornetze

Physical and Embedded Computing Smart- und Submetering

Smart Home

Drohnen und Roboter

Wearables

Smart Phones

Single Board Computer

Industrie 4.0 / Industrial Internet

Wearables

- Typische Merkmale der Geräteklasse
 - Datenverarbeitung in der Kleidung und in Körpernähe
 - Unterstützung in Alltagssituationen
 - Unauffällige Integration/Einbettung in nicht-technische Gegenstände
 - Erfassung des Umgebungskontext
 - Neuartige Benutzerschnittstellen z.B. Gestenerkennung

Steve Mann (MIT): Pionier in Erforschung von Wearable Computing

Life-Logging

- Typische Merkmale der Geräteklasse
 - Aufzeichnen von persönlichem Verhalten, Aktivitätsdaten und Vitalwerten
 - Problematik → Wo werden Daten gespeichert, wer hat Zugriff?
 - Datenfusion aus unterschiedlichen Sensorquellen und Positionsdaten
 - Auswertung und Anzeige der gesammelten Daten auf den Geräten nicht oder nur rudimentär möglich
 - Smartphone- und Cloud-Anbindung, Apps mit Zusatzfunktionen

 Löschen von unerwünschten Erfahrungen und Daten oft nur händisch oder nicht vorgesehen

Geräteklassen & Anwendungsbeispiele

Spezialisierungsgrad ⇔ Systemgröße

Nanonetze

Smart Dust

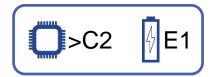
Sensornetze

Physical and Embedded Computing Smart- und Submetering

Smart Home

Drohnen und Roboter

Wearables


Smart Phones

Single Board Computer

Industrie 4.0 / Industrial Internet

Smart Phones

- Heutige Schnittstelle Mensch ←→ IoE
 - Steuerung von Remote-Geräten (Unterhaltungselektronik, Licht, Schlösser etc.)
 - Crowdsourcing und Participatory Sensing
- Leistungsfähige Hardware
 - 32/64-Bit Multicores und/oder Unterstützung paralleler Threads
 - Komplexe Betriebssysteme und Programmierumgebungen
 (z.B. Android: Linux, Entwicklung auf Java-Basis), RAM im Gigabyte-Bereich
- Setzen Existenz von leistungsfähiger Kommunikationsinfrastruktur voraus
- Typische Kommunikationsschnittstellen
 - WLAN, Bluetooth, NFC
 - GSM, GPRS, UMTS, LTE
 - USB

Geräteklassen & Anwendungsbeispiele

Spezialisierungsgrad ⇔ Systemgröße

Single Board Computer

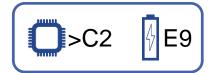
Industrie 4.0 / Industrial Internet

Smart Dust

Nanonetze

Physical and Embedded Computing

Sensornetze

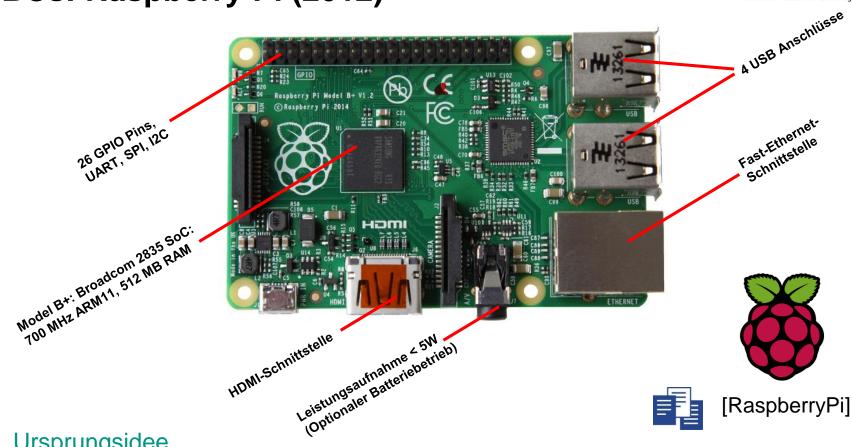

Smart- und Submetering

Smart Home

Drohnen und Roboter

Smart Phones Wearables

Single-Board Computer (SBC)


- Typische Anwendungsbereiche
 - Entwicklungs- und Prototyping-Umgebungen
 - Waschmaschinen und Haushaltsgroßgeräte
 - Fernbedienungen, Heizungssteuerung
- Anpassbare bzw. vielfältige Betriebssysteme
 - Z.B. PC-OS (Linux, Windows), Android,
 bis zu Echtzeitbetriebssystemen für eingebettete HW
- Kostengünstige Herstellungsweise
 - Gesamte Hardware auf einer Leiterplatte (SoC, ASICs)
 - Einfache/Überschaubare Hardware und Treiber
 - Festplatten, SD-Karten, USB-Sticks nur optional anschließbar
 - Sensorik von kleineren Geräten teilweise direkt nutzbar
 - Konfigurierbare und Hardwarenahe Interfaces (IO Pins, SPI, ...)
 - Typische Komponenten
 - Watchdog-Timer, A/D-Wandler, Ethernet-Schnittstellen

SBCs: Raspberry Pi (2012)

- Ursprungsidee
 - Einfache Rechnerarchitektur, Preisgünstig (~35€)
 - Vermittlung von Programmier- und Hardwarekenntnissen für Studienanfänger und Jugendliche
 - 3 Millionen Exemplare (Juni 2014)

Geräteklassen & Anwendungsbeispiele

Spezialisierungsgrad ⇔ Systemgröße

Sensornetze

Smart Dust

Nanonetze

Physical and Embedded Computing Smart- und Submetering

Smart Home

Wearables

Drohnen und Roboter

Single Board Computer

Industrie 4.0 / Industrial Internet

Smart Phones

Industrie 4.0 / Industrial Internet

- Breites Spektrum an unterschiedlicher Hardware → Heterogenität
 - Drahtlose Sensorik
 - Energieversorgung: Batterien und/oder Energy Harvesting
 - Leistungsfähige Steuer- und Regelsysteme
- Anforderungen
 - Zuverlässigkeit
 - Robustheit
 - Langlebigkeit
- Kommunikationsschnittstellen
 - WirelessHART (IEEE802.15.4)
 - RFID
 - Bluetooth Low Energy?
 - LTE Mikro-/Pikozellen?
 - Feldbussysteme

Kabelloser Temperatursensor mit Energy Harvesting

[abb]

Aktuelle Forschungsprojekte im Bereich loE

DFG SPP 1914: CoCPN

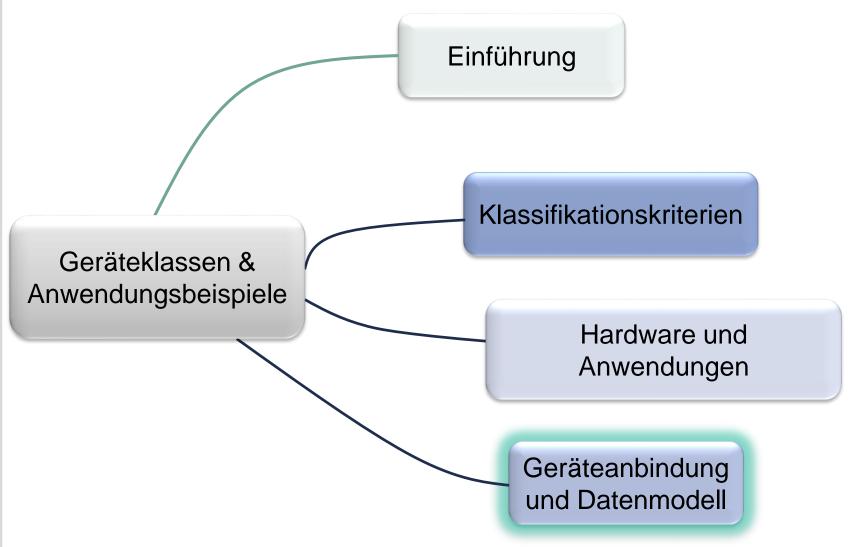
Wie können Regelkreise beschränkte Netzwerkressourcen gemeinsam nut

BMBF KASTE

Wie

Forschen Sie mit! Abschlussarbeiten

- HiWi-Stellen


das Energienetz der Zukunft aus?

BMBF FlexSiPro

Wie werden Produktionsnetze sichere und flexibel?

Betriebssysteme und Programmierung im IoE

Große Unterschiede bei Anwendungsentwicklung zwischen Geräteklassen

- Anwendung eng mit jeweiligem Betriebssystem verbunden
- Wenige Abstraktionsebenen
- Eine Anwendung pro Gerät
- Keine echte Nebenläufigkeit
- Einfaches Powermanagement durch Controller
- Asynchrone und eventbasiert Informationsverarbeitung
- Hardwarenahe Mikrocontroller-Programmierung
- Eigene Gerätetreiber nötig
- Interaktion durch Sensoren / Aktoren

Ressourcenbeschränkte Geräte

z.B. Sensorknoten

- App-Konzept: Software in gebündelter Form
- Zahlreiche Abstraktionen und Dienste des Betriebssystems nutzbar
- Multithreading
- Multi-Cores
- Speichermanagement
- Ausgefeiltes Powermanagement
- Application-Lifecycle
- Activities
- Interaktion zwischen Anwendungen
- Graphische Benutzerschnittstelle

Leistungsstarke Geräte z.B. Smart Phones

Betriebssysteme - Beispiele

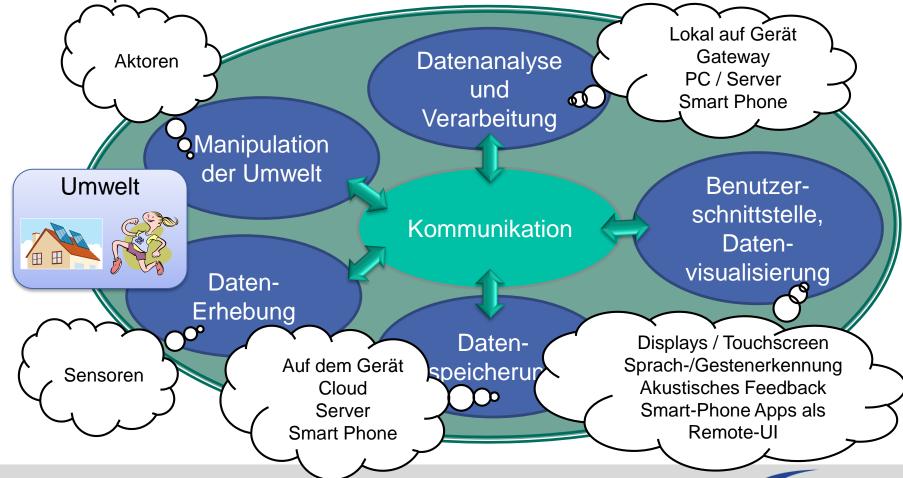
- Sensornetze
 - TinyOS (C-Dialekt) → Komponentenarchitektur, Angepasste eventbasierte Programmiersprache (nesC), speichereffizient

- Contiki (C) → Protothreads, 6lowpan, Low-Power-Anwendungen, modular
- SBCs und Physical Comuputing

■ RISC OS → ARM Architektur, GUI, Kleiner Kern, sehr modular

- Linux- und Android-Varianten (C, C++, Java)
- Windows On Devices $(C++/C#) \rightarrow 32$ -Bit x86-Architektur, FAT32, kein GUI
- Wearables
 - Android Wear (Java) → Synchronisation mit Handy, Spracheingabe als UI

- Smart Phones / Tablets
 - Android (Java)
 - iOS (Objective C)
 - → Touch Frameworks, Cloud-Libraries, ...
 - → 64-Bit Architekturen (ARM, MIPS, PPC, x86)
 - → Grafikbeschleunigung, Virtualisierung



Datenmodell

- Betrachtung von Einzelgeräten im loE oft schwierig
 - → System- oder Anwendungsmodell besser zur Analyse geeignet

Alle Aspekte können sowohl auf einem Gerät als auch verteilt realisiert werden

Cloudanbindung

- Trend zur Integration von IoE-Kleinstgeräten in Cloud für Datenhaltung
 - Geräte müssen heute oft manuell über PC synchronisiert werden
 - Zunehmend Remote-Steuerung über Smartphone- und Tablet-Apps
 - Google PowerMeter (2009-2011)
 - Ausstattung von kalifornischen Haushalten mit kostenlosem Smart-Meter
 - Energieverbrauchsstatistiken per Cloudanbindung im Internet abrufbar
 - Amazon Kinesis (2013)
 - Echtzeitfähige Streaming-Schnittstelle für Sensormess- und Finanzdaten
 - Gleichzeitige Erfassung von Hunderttausenden Datenquellen
 - NETLab Toolkit
 - Graphisches Toolkit zum einfachen Zusammenstecken von Flash-Widgets
 - Integration von Arduino-Geräten und Cloud Speicherung
 - Thingsquare
 - Anbindung von Sensornetzen an Smartphones und Cloud-Speicher via Gateway

Die von uns zur Erstellung der Folien genutzte

LITERATUR

Literatur

[Bassi2013] Bassi, A., Bauer, M., Fiedler, M., Kramp, T., Kranenburg, R., Lange, S.; Enabling Things

to Talk - Designing IoT solutions with the IoT Architectural Reference Model; Springer

Open 2013

[abb] http://new.abb.com/products/measurement-products/temperature/process-industry-head-

thermometers/tsp300-w-wirelesshart-temperature-sensor, ABB TSP300-W

[Arduino] http://arduino.cc/en/, Arduino

[Asus] http://www.asus.com/Phones/ASUS_ZenWatch_WI500Q/, ZenWatch WI500Q

[Autographer] http://www.autographer.com/, Autographer

[AutoHUD] http://bwongtech.blogspot.co.uk/2013/02/how-to-build-hud-for-your-car.html,, Bill Wong

Tech Smart Technology

[BeagleBoard] http://beagleboard.org/black, BeagleBone Black

[contiki] http://contiki-os.blogspot.com/, Contiki OS

[ElectricImp] https://electricimp.com/, electric imp

[Elegato] https://www.elgato.com/eve, Eve

[EnOcean] http://www.enocean.com/, EON 100

[Espruino] http://www.espruino.co, Espruino

Literatur – Internetquellen

[FZI] http://www.fzi.de/de/forschung/fzi-house-of-living-labs/, House of Living Labs

[Gira] http://www.gira.de/gebaeudetechnik/systeme/enet.html, eNet

[Google] https://www.google.com/glass/, <a href="htt

[Jawbone] https://jawbone.com/up, Up

[LG] http://www.areamobile.de/b/2673-lg-g-watch-r-die-runde-smartwatch-im-hands-

on#g.2673.5.2010, GWatchR

[libelium] http://www.libelium.com/products/waspmote/, libelium Waspmote

[memsic] http://www.memsic.com/, IRIS Mote

[MicroMote] http://wiesel.ece.utah.edu/projects/6/, Michigan Micro Mote (M3)

[micropelt] http://www.micropelt.com/, TE-Power Node + TE-Power Probe

[MoNaCo] http://www.ece.gatech.edu/research/labs/bwn/monaco/, Monaco, GeorgiaTech

[nasa] http://www.nasa.gov/content/orbiting-rainbows-phase-ii/, Orbiting Rainbows

[nest] <u>https://nest.com/</u>, Google Nest

[Nike] http://www.nike.com/de/de_de/c/nikeplus-fuelband, Fuelband

Literatur – Internetquellen

[openHAB] http://www.openhab.org/, openHAB

[Osram] http://www.osram.de/osram_de/index.jsp, Lightify

[Pebble] http://getpebble.com/, Pebble

[pepetuum] http://www.perpetuum.com, Wireless Sensor Node

[Philips] http://www.philips.de/e/hue/hue.html, Hue

[RaspberryPi] http://www.raspberrypi.org/, Raspberry Pi

[RFC7228] http://tools.ietf.org/html/rfc7228#section-3, IETF RFC7228

[RWE] https://www.rwe-smarthome.de/web/cms/de/448330/smarthome/, SmartHome

[Samsung] https://www.samsung.com/, Gear Live, Galaxy S5

[SharksCove] http://msdn.microsoft.com/en-US/windows/hardware/dn770216, Sharks Cove

[SmartDust] http://robotics.eecs.berkeley.edu/~pister/SmartDust/, Autonomous sensing and

communication in a cubic millimeter, UC Berkeley

[smartthings] http://www.smartthings.com/, Samsung Smart Things

[Sony] http://www.sonymobile.com/, Smartwatch 3 SWR50, xperiaZ2

[SparkIO] https://www.spark.io/, Spark Core

Literatur – Internetquellen

[sunspot] http://www.sunspotworld.com/, SunSPOT World

[supermechanical] http://supermechanical.com/, Twine

[TinkerForge] http://www.tinkerforge.com, TinkerForge

[tinyos] http://www.tinyos.net/, TinyOS

[zeit-online2011] http://www.zeit.de/2011/27/IG-Smartphone, Smartphone von innen

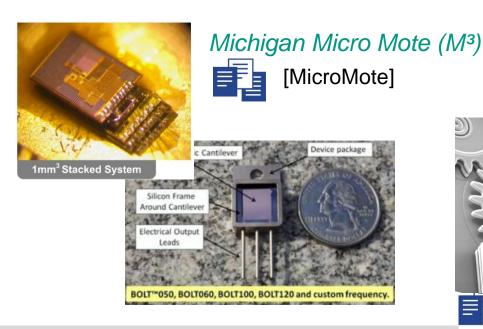
[landys] http://www.landisgyr.com/product/e330-focusae-ax-and-e350-focusae-ax-sd/

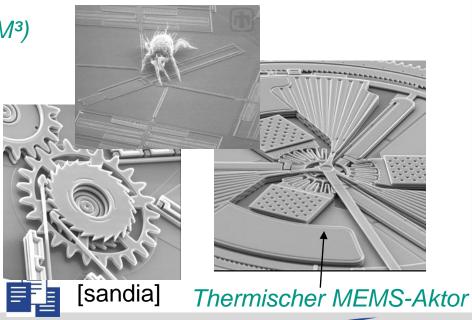
Weitere Beispiele und Folien, die erwähnenswert sind, aber im Hauptteil keinen Platz mehr gefunden haben

ANHANG

j+

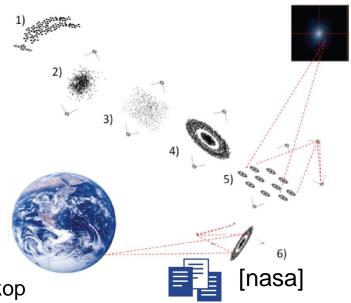
Klassifikation Sensoren


- Klassifikation nach unterschiedlichen Kriterien z.B.:
 - Kontext (Aktivität, Position)
 - Technik (Infrarot, Ultraschall, Induktion, Schall)
 - Funktionsweise physikalisch (magnetisch, mechanisch, elektrisch)
 - Funktionsweise logisch (integriert, intelligent, aktiv, passiv)
 - Messgröße (Temperatur, Luftdruck, Beschleunigung)
 - Informationsgehalt der Sensordaten (eindimensional, mehrdimensional)
 - Räumlicher Bezug zum Messobjekt (berührungslos, berührend, gerichtet, omnidirektional)
 - Anwendungsgebiet
- Analog-digital Umwandlung für Sensormesswerte generell notwendig
 - Analog Digital Converter (ADC) notwendig
 - ADC auf den vielen Geräten direkt in den Mikrokontroller integriert



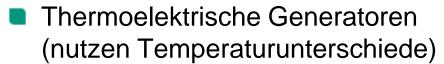
Smart Dust

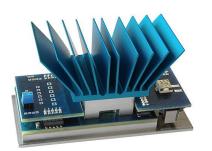
- Hardwareeigenschaften
 - Geringe Leistungsaufnahme und Hardwareressourcen
 - 8-Bit Systeme mit RAM im niedrigen Kilobyte-Bereich
 - Kein oder sehr wenig Speicher → Fokus anwendungsspezifische Sensorik
 - Mikroelektronisch-Mechanische Komponenten (MEMS)
 - Energy Harvesting (Miniaturisierungsgrad oft noch problematisch)
 - Keine Möglichkeiten zur visuellen Ausgabe von Informationen (Auch keine LEDs...)



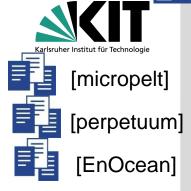
Smart Dust - Anwendungsideen

- Bisher nur Forschungsthematik
- Mögliche Einsatzbereiche
 - Durchdringung der Umwelt
 - Auftragen an Strukturen und Oberflächen (Intelligente Wandfarbe)
 - Deep Space Exploration
 - Abwerfen in Atmosphäre von Planeten
 - Alternativ als Wolke mit manipulierbaren optischen Eigenschaften → Weltraumteleskop
 - Niedrige Stückkosten und Gewicht
 - Hohe Stückzahl und Redundanz
 - Elektronische Haut
 - Geringe Größe und Gewicht
 - Geringe Leistungsaufnahme, kompakte Energiequellen





Beispiele Scavanger für Energy-Harvesting (E0)


- Photovoltaik
- Kinetische Energieumwandlung
 - Rotation
 - Linear-Bewegungen
 - Vibration/Stöße
 - Strömung

Beispiele: Sensorvielfalt

Verfügbare Sensorik (Waspmotes)

Gase (CO₂, Sauerstoff, Ethanol...)

Landwirtschaft (Bodenfeuchtigkeit, Wind, Regenmenge, Helligkeit ...)

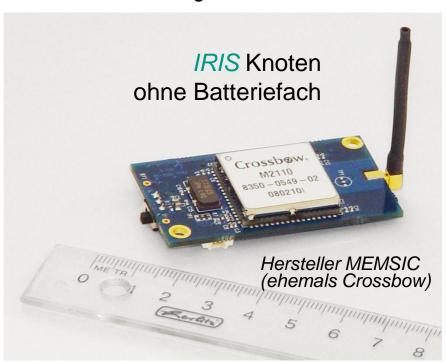
Strahlung
(Beta- und Gammastrahlung)

Event Monitoring
(Druck, Hall Effekt, Vibration ...)

Smart Parking (Magnetfeld)

Smart Cities (Erkennung von Rissen, Geräuschpegel ,...)

Smart Metering
(Durchflussvolumen, Pegel, Ultraschall ...)



j+

Klassische Sensorknoten – Beispiel: IRIS Motes

- Prozessor
 - 8 bit Mikrocontroller: XM2110CA basierend auf Atmel ATmega1281
 - 8 MHz Takt (vergleichbar mit 8088 CPU aus dem original IBM PC (~1982), aber viel geringerer Energiebedarf)
- Funkchip
 - AT86RF230
 - IEEE 802.15.4 konform
 - ZigBee kompatibel
 - 2,4 GHz, 250 kBit/s, bis zu 300 m Reichweite (outdoor), bis zu 50 m Reichweite (indoor)
- Speicher
 - 4 kB EEPROM, 8 kB RAM
 - 128 kB Programm Flash Memory, 512 kB Measurement Flash Memory
- Ausmaße und Gewicht
 - 5,8 x 3,2 x 0,7 cm
 - Ohne Batterie & Sensorboard: 18 g

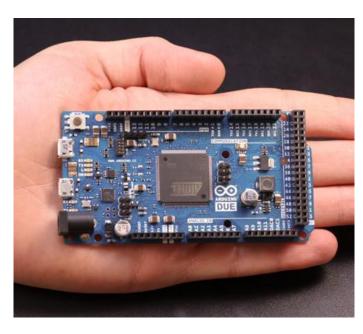
<u>i+</u>

Klassische Sensorknoten – Beispiel: IRIS Motes

- 3 LEDs (rot, grün, gelb) Onboard
- Peripherie
 - UART, 10bit AD-Wandler, Digital IO, I²C, SPI Bus, JTAG ICE, 51 Pin Connector
- Energieversorgung
 - 2 x AA Zellen um notwendige Spannung zu gewährleisten
 - Microcontroller: 8 μA (sleep), 8 mA (active)
 - Funkchip: 15,5 mA (empfangen), 17,4 mA (senden), 1,5 mA (idle), 0,02 μA (sleep)
 - TinyOS
 Betriebssystem MTS400/420 Sensorboard
- Programmierung und Zubehör

 Retriebssys
 - NesC (C-Derivat)
 - MoteWorks: Plattform zur Entwicklung von Sensornetzapplikationen
- Zusätzliche Sensorboards
 - Licht, Temperatur, Feuchtigkeit, Barometrischer Druck, Beschleunigung
 - GPS
 - Zusätzlicher Speicher für Daten
 - Zusätzliche analoge und digitale I/O Schnittstellen
- Kosten: 134 \$ / Stück ohne Sensorboard

Beispiele: Arduino



- Arduino Due (~40 €)
 - Atmel SAM3X8E Mikrocontroller
 - 32-Bit, 84 MHz
 - 96KB SRAM
 - 54 Digital I/O Pins, 12 Analog Input Pins,
 2 Analog Output Pins (DAC), UART, SPI, USB
 - Größe: 102 x 53mm

Arduino DUE

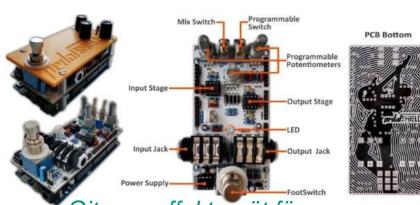
[Arduino]

Erweiterbar durch Vielzahl an spezialisierten Shield-Boards

GSM-, WiFi- und Motor-Shields

Arduino – Anwendungsbeispiele

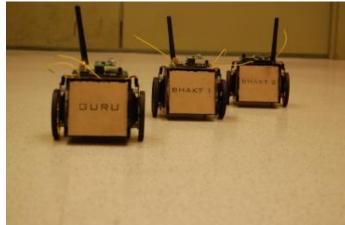
Strickmaschine mit End-of-Line Sensoren



B-Geigie-nano: Eigenbau Geigerzähler (Projekt Safecast)

HUD-Display für das Auto
[AutoHUD]

Gitarreneffektgerät für programmierbare Soundeffekten



Beispiele: Schwarmroboter

- Schwarmroboter
 - Robomotes
 - Wanda (IPR)
 - GuruBhakts

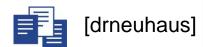
Robomotes

- Atmel 8535 Mikrocontroller
- Infrarot
- Kompass

Wanda (IPR)

- ARM7-M Architektur
- ZigBee
- Infrarot
- LEDs
- Abstandssensoren
- Beschleunigungssensoren

Smart- und Submetering


- Hardwareeigenschaften Gateways
 - Kommunikationsschnittstellen
 - RS485
 - Wireless M-Bus
 - 2-3 10/100 Base-T Ethernet Schnittstellen
 - WAN, HAN und lokale Kontrollsysteme
 - Quadband GSM mit GPRS Class 10
 - Leistungsaufnahme
 - Typisch: 2,6 Watt
 - Peak: 5,6 Watt

- Optische Datenschnittstelle (9.600 Baud)
- Leistungsaufnahme < 1,3 Watt</p>

Smart- und Submetering

- Weltweit unterschiedlichste Hardware-Plattformen und Standards
- Beispiel: Gridstream in Texas, USA
 - ~1 Million Haushalte in 2012
 - Zigbee Mesh-Netzwerk
 - 900Mhz USM
 - Zähler hergestellt von Landis+Gyr
 - Stromverbrauch
 - Typisch: 0,6 Watt
 - Peak: 1 Watt

Smart Home (3)

- Anwendungsbeispiele
 - Philips Hue / Osram Lightify: Steuerung der Lampe per App auf dem Smartphone oder Tablet (Lichtfarbe, Intensität, Zeitsteuerung...)
 - RWE SmartHome
 - Feueralamierung per SMS auf das Handy
 - Alarm bei Einbruch
 - Steuerbare Steckdosen
 - Regelung der Heizkörper
 - Gira eNet: Smarte Funk-Lichtschalter (per Gateway von mobilen Geräten steuerbar)

Life-Logging Beispiel: Autographer

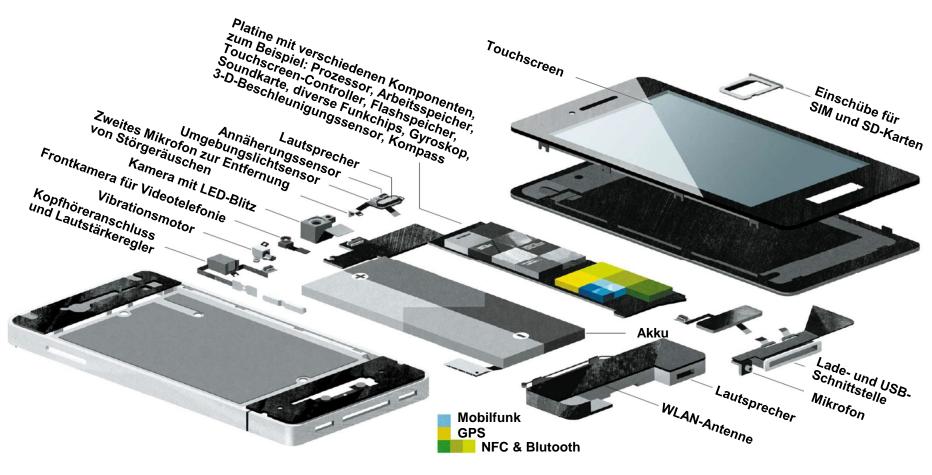
Kamera macht automatisch Bilder wenn Sensoren günstigen Zeitpunkt ermitteln

- Sensorik
 - Bewegungsdetektor (Infrarot)
 - Beschleunigung
 - Temperatur
 - Magnetometer
 - Licht/Farbsensor

Händische Verwaltung der Daten wird praktisch unmöglich

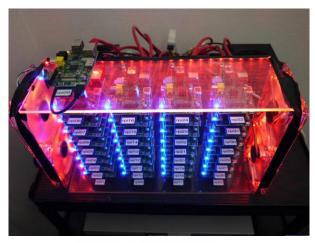
- Ca. 240 Bilder/h
- Verknüpfung mit Positionsdaten (GPS)
- Daten gelangen per Blutooth zum Smartphone
- Lokale Speicherung auch auf dem Gerät

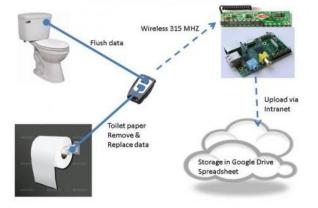
Autographer


[Autographer]

Smart Phones – Innenleben und Sensorik

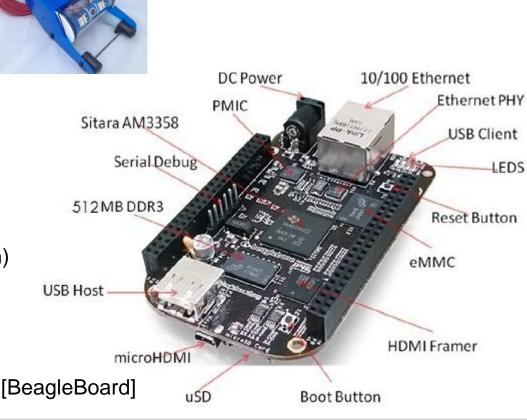
[zeit-online2011]




SBCs: Raspberry Pi – Anwendungsbeispiele

- Vielfältig einsetzbar (häufig auch in Bastlerprojekten) z.B. als
 - Tracking-System für Ballonaufstiege in die Stratosphäre
 - Supercomputer
 - Gewächshaussteuerung
 - Online-Videorecorder
 - Persönliche Cloud / Dropbox-Alternative
 - Hardware Emulator (z.B. C64)
 - Postkasten-Überwachung
 - Kunstprojekte, Bildung und Lehre (einfaches Hardwaredesign)
 - Internet of Things Toilette
- Diverse Betriebssysteme möglich u.a. RISC OS, Android und diverse Linux-Varianten

Internet Toilet System Layout


SBCs: BeagleBone Black (2013)

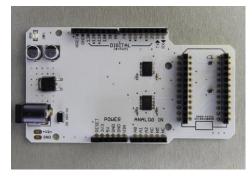
- Entwicklungsplattform mit Fokus Home Automation (~50€)
- Hardwaredesign frei verfügbar, Erweiterung durch Zusatzplatinen (Capes)
- Realisierte Projektbeispiele
 - OpenROV Mini-U-Boot
 - 3D Printer
 - Autopilot für zivile Dronen
 - Steuerung der heimischen Bierbraustube (Fermentationstemperatur, CO2 Konzentration, ...)
 - Ninja Blocks (Mini-PCs für Homeautomation)

SBCs: Sharks Cove (Microsoft + Intel 2014)

- Sehr Leistungsfähiger SBC für größere IoT-Prototypen (~250€)
 - Hardware/Treiberentwicklung für Tablets und Mobilgeräte
- Windows 8.1 und Android-Unterstützung
- Hardwarespezifikation
 - x86-Atom Architektur, 1,88 GHz Tablet-CPU
 - 1GB RAM, 16GB eMMC
 - Vielfältige Schnittstellen (GPIO, I2C, I2S, UART, SDIO, Kamera)
 - Unterstützung u.a. für NFC, Touch-Eingaben
 - Größe: 102 x 152 mm

[SharksCove]

Beispiele: Spark Core


Karlsruher Institut für Technologie

- Spark Core
 - 32-Bit ARM Cortex M3 (72 MHz)
 - 20KB SRAM
 - 128 KB Flash (intern)
 - 12 Bit ADC
 - 18 I/O Pins (8 Digital, 8 Analog, RX, TX)
 - USB, UART, SPI, I2C, JTAG
 - CC300 IEEE 802.11b/g WiFi Modul
 - Energiebedarf 190-260 mA (senden)
 - 92 mA (empfangen)
 - 5µA (shut-down)
 - Größe und Gewicht: 38mm x 20mm, 14g
- Cloud API erlaubt direkte Datenspeicherung
- Erweiterbar durch steckbare Shields
- Steuerung einzelner Pins per App vom Smartphone

Tinker-App

Arduino Adapter Shield

Relay Shield für 220V-Geräte

Life-Logging Pioniere

- Ursprungsidee
 - Digitales Gedächtnis als Erinnerungsstütze im Alltag
- Gordon Bell (Microsoft Research)
 - Projekt MyLifeBits
 - Aufzeichnung des aller digitalen Dokumente und des ganzen Lebens mit Ausnahme von Gesprächen u.a. per Keylogger und SenseCam
 - Zwischen 1998 und 2007 insgesamt150 GB an Daten gesammelt
 - Metadaten zur Kategorisierung wurden als Kernproblematik identifiziert
 - Problematik: Automatisches Aufnehmen in unerwünschten Situationen unterbinden (z.B. vertrauliche Gespräche oder beim Toilettenbesuch)
- Pulsuhren für Jogger und Radfahrer waren frühe Life-Logging Vorläufer
- Heute: Quantified-Self Bewegung

[SenseCam]

Kommunikationsarchitektur

Datenverarbeitung im IoE bezieht viele Geräte ein

Wo werden welche Daten tatsächlich ten und gespeichert?

Back-End Server

Zwischensystem:
Datenmenge
Speicher
Leistung

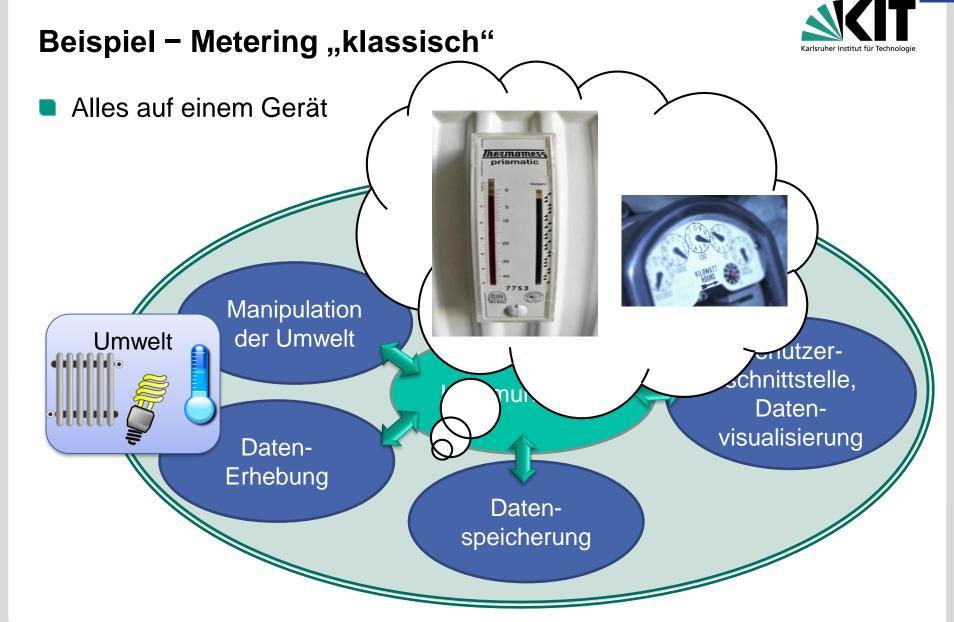
Gateways,
Middleboxes,
Aggregators,
Edge-Servers

Lokal auf Gerät:

Speichermengie

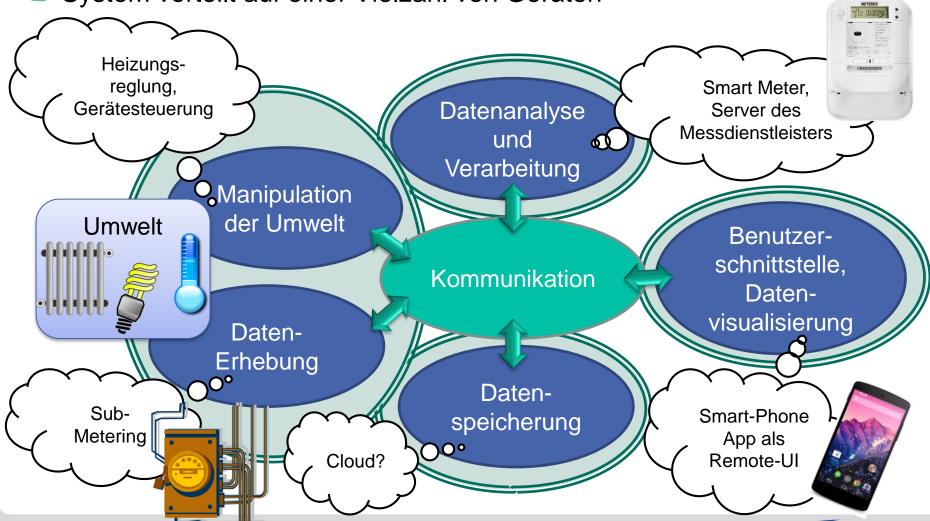
Privatheit

Internet of Things


Daten-analyse, Aggregation, Monitoring

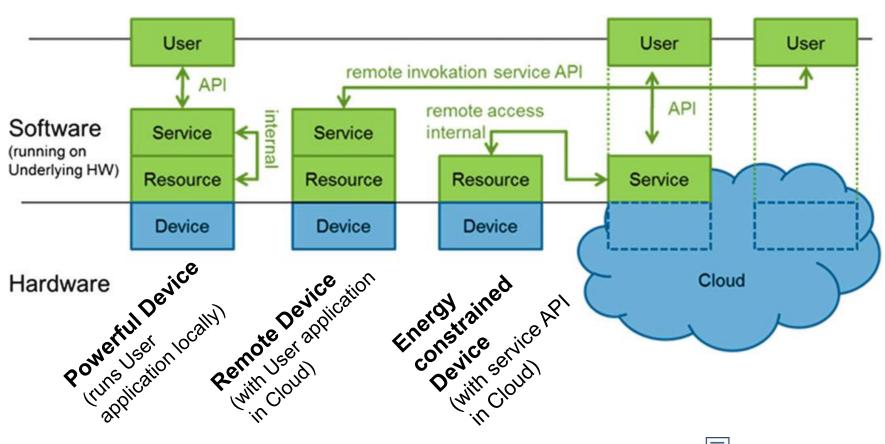
Server / Cloud: + Speichermenge + Leistung - Privatheit

Cloud-Server



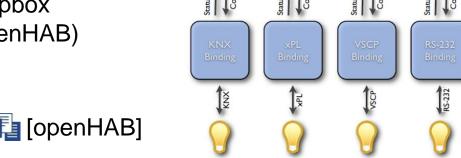
Datenmodell Beispiel – Smart Metering

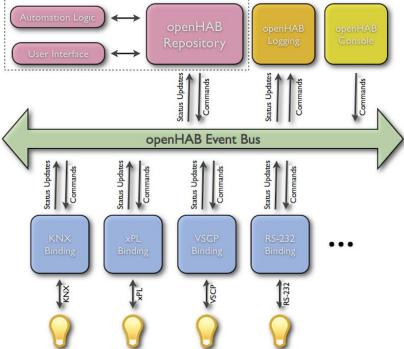
System verteilt auf einer Vielzahl von Geräten



Deployment-Model

Human





Beispiele openHAB: Anbindung bei Homeautomatisierung

- **Smart Home**
 - OpenHAB (open Home Automation Bus)
 - Unabhängig von herstellerspezifischen Protokollen und Hardware
 - Basiert auf OSGi und Java Virtual Machine
 - UI für verschiedene (Mobil-)Geräte
 - Hardwareerweiterungen über Bindings möglich
 - Rule Engine zur Automatisierung
 - Vielzahl an Schnittstellen u.a. Sprachsteuerung, XMPP, NFC, Google Kalender, Dropbox Cloud Service (my.openHAB)

